Energetics of Water Oxidation Catalyzed by Cobalt Oxide Nanoparticles: Assessing the Accuracy of DFT and DFT+U Approaches against Coupled Cluster Methods.
نویسندگان
چکیده
Some of the most promising catalysts for water oxidation rely on crystalline and amorphous cobalt oxide nanoparticles. Density functional theory (DFT) calculations are routinely used to study the electronic and atomic structures of these materials as well as the thermodynamics and mechanisms of the electrochemical oxygen evolution reaction. The accuracy of these theoretical predictions has never been compared to high-level quantum chemistry methods. We perform coupled cluster (CC) quantum chemistry calculations on model cobalt oxide surface sites and use them to benchmark the accuracy of the most popular exchange and correlation functionals. Hybrid B3LYP and PBE0 functionals lead to fair agreement with the CC energies, while standard gradient-corrected functionals show important discrepancies. The inclusion of on-site electronic repulsion (DFT+U) substantially improves the calculated electronic and structural properties, but no value of the U parameter reproduces the CC results. We discuss the implications of these findings for amorphous cobalt phosphate nanoparticles, showing that the reactivity of these catalysts is not altered by surface phosphate groups.
منابع مشابه
Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters.
We present a detailed study of the energetics of water clusters (H(2)O)(n) with n ≤ 6, comparing diffusion Monte Carlo (DMC) and approximate density functional theory (DFT) with well converged coupled-cluster benchmarks. We use the many-body decomposition of the total energy to classify the errors of DMC and DFT into 1-body, 2-body and beyond-2-body components. Using both equilibrium cluster co...
متن کاملModeling Excited States in TiO2 Nanoparticles: On the Accuracy of a TD-DFT Based Description
We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles. Specifically, we compared TD-DFT results obtained using different exchange-correlation (XC) potentials with those calculated using Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demo...
متن کاملApplication of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
متن کاملAu nano dendrites/composition optimized Nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation
In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 ...
متن کاملEfficient Determination of Butylated Hydroxyanisole Using an Electrochemical Sensor Based on Cobalt Oxide Nanoparticles Modified Electrode
A simple and reliable electrochemical sensor based on cobalt oxide nanoparticles modified glassy carbon electrode (GCE/CoOxNPs) for determination of butylated hydroxyanisole is presented here. The nanoparticles were fabricated by electrodepositing method. The modified electrode shows excellent catalytic activity toward butylated hydroxyanisole oxidation in pH 12.0 phosphate buffer solution (PBS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 4 24 شماره
صفحات -
تاریخ انتشار 2013